オカレンス(観察データと標本)

White shark tagging off New Zealand

最新バージョン The National Institute of Water and Atmospheric Research (NIWA) によって公開 2018/08/08 The National Institute of Water and Atmospheric Research (NIWA)

DwC-A形式のリソース データまたは EML / RTF 形式のリソース メタデータの最新バージョンをダウンロード:

DwC ファイルとしてのデータ ダウンロード 2,214 レコード English で (67 KB) - 更新頻度: not planned
EML ファイルとしてのメタデータ ダウンロード English で (14 KB)
RTF ファイルとしてのメタデータ ダウンロード English で (15 KB)

説明

Regional Population Connectivity, Oceanic Habitat, and Return Migration Revealed by Satellite Tagging of White Sharks, Carcharodon carcharias, at New Zealand Aggregation Sites.

A joint NIWA/Department of Conservation (DOC) tagging programme was launched in 2005. Hi-tech electronic tags are being used to gather information on where the sharks are and when, and to record their depth and the temperature of the surrounding water. Three tag types have been used: popup archival tags, acoustic tags, and dorsal fin tags.

Popup tags are implanted in the muscle under the dorsal fin with a tagging pole, and record depth, temperature and location, storing the data for up to a year. They then release themselves from the shark, float to the surface, and transmit summaries of the data to a satellite. If the tags are physically recovered, the high resolution data collected at one minute intervals can be downloaded. Popup tags provide only approximate location data, so they are most useful for tracking long-distance migrations.

Acoustic tags send out coded, individually identifiable sound ‘pings’ that can be detected up to a kilometre away by acoustic data loggers. The tag batteries last long enough to monitor the presence of white sharks in the region in the vicinity of a data logger for two years. Acoustic tags provide accurate fine-scale information on sharks at specific locations.

Dorsal fin tags bridge the gap between popup and acoustic tags. They provide accurate location information by transmitting to orbiting satellites every time the shark is at the surface and the dorsal fin and the tag’s aerial are exposed to air. Their batteries can last for more than one year, so both fine scale and large scale movement patterns can be recorded. However, dorsal fin tags are more difficult to deploy: the shark has to be caught and restrained while the tag is attached to the dorsal fin. So far, only a few of these tags have been deployed in New Zealand.

Since 2005, 44 white sharks have been tagged with popup tags, mainly at the Chatham Islands and Stewart Island. These islands support large colonies of fur seals, which are a major food source for white sharks. Our research has focussed on Stewart Island since 2009. The population there is dominated by males (about 2.2 males for every female). Nearly all of the females are immature, being shorter than the female length at maturity of 4.5 to 5 m. Only about one-third of the males are longer than the male length at maturity of about 3.6 m. This indicates that the white shark aggregations at Stewart Island are not related to mating, and are most likely driven by the abundance of seals for food. Large, mature females are rarely seen anywhere in New Zealand and their distribution, habitat and behaviour are almost completely unknown.

Tagging results show that most New Zealand white sharks make annual migrations to tropical waters in winter, travelling as far as 3,300 km away. Sharks have migrated to the Great Barrier Reef in Australia, the Coral Sea, New Caledonia, Vanuatu, Norfolk Island, Fiji and Tonga. They don't cross the equator.

Most of the sharks from Stewart Island headed northwest of New Zealand, whereas most Chatham Islands sharks headed north. However, some sharks from the two tagging locations overlap in the tropics. Surprisingly, we have not detected any direct movement between Stewart and Chatham islands.

Some popup tags have remained on the sharks for long enough (up to one year) to reveal that the sharks returned to their tagging locations after their tropical holiday. This has been confirmed by photo-identification work at Stewart Island. Each shark has a unique colour pattern, particularly around the gills and on the tail. Some individuals have been seen at Stewart Island each year for multiple years. This indicates that white sharks have a sophisticated navigation mechanism that enables them to make major direct oceanic migrations, and then return to precisely the spot they left from. We do not know how they achieve this.

データ レコード

この オカレンス(観察データと標本) リソース内のデータは、1 つまたは複数のデータ テーブルとして生物多様性データを共有するための標準化された形式であるダーウィン コア アーカイブ (DwC-A) として公開されています。 コア データ テーブルには、2,214 レコードが含まれています。

この IPT はデータをアーカイブし、データ リポジトリとして機能します。データとリソースのメタデータは、 ダウンロード セクションからダウンロードできます。 バージョン テーブルから公開可能な他のバージョンを閲覧でき、リソースに加えられた変更を知ることができます。

バージョン

次の表は、公にアクセス可能な公開バージョンのリソースのみ表示しています。

引用方法

研究者はこの研究内容を以下のように引用する必要があります。:

Duffy, C.A.J.; Francis, M.P.; Manning, M.; Bonfil, R. (2012). Data from: Regional population connectivity, oceanic habitat, and return migration revealed by satellite tagging of white sharks, Carcharodon carcharias, at New Zealand aggregation sites. Southwestern OBIS, National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand, 2014 records, Online http://nzobisipt.niwa.co.nz/resource.do?r=mbis_whiteshark released on May 26, 2014.

権利

研究者は権利に関する下記ステートメントを尊重する必要があります。:

パブリッシャーとライセンス保持者権利者は The National Institute of Water and Atmospheric Research (NIWA)。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF登録

このリソースをはGBIF と登録されており GBIF UUID: d55a864e-6259-4981-83f8-7941c0c3c118が割り当てられています。   GBIF New Zealand によって承認されたデータ パブリッシャーとして GBIF に登録されているThe National Institute of Water and Atmospheric Research (NIWA) が、このリソースをパブリッシュしました。

キーワード

Occurrence; Observation

連絡先

Malcolm Francis
  • 最初のデータ採集者
  • 連絡先
Principal Scientist - Fisheries
NIWA
Private Bag 14901, Kilbirnie
6241 Wellington
NZ
Kevin Mackay
  • メタデータ提供者
Principal Scientist - Fisheries
NIWA
Private Bag 14901, Kilbirnie
6241 Wellington
NZ

地理的範囲

South western Pacific Ocean and Tasman Sea

座標(緯度経度) 南 西 [-51, -156.9], 北 東 [-15.3, 149.2]

生物分類学的範囲

White shark

Species Carcharodon carcharias (White shark)

時間的範囲

開始日 / 終了日 2005-04-01 / 2010-02-01

プロジェクトデータ

説明がありません

タイトル White shark tagging off New Zealand
ファンデイング This project was funded by the New Zealand Department of Conservation, National Institute of Water and Atmospheric Research Ltd., the Foundation for Research Science and Technology, Wildlife Conservation Society NY, National Geographic Society, and NABU/SharkTracker
Study Area Description White sharks were tagged off Stewart Island and the Chatham Islands, New Zealand
研究の意図、目的、背景など(デザイン) Twenty-five White Sharks (Carcharodon carcharias) were tagged with pop-up archival transmitting tags at Chatham Islands, Stewart Island, and one coastal location in New Zealand between April 2005 and September 2009.

プロジェクトに携わる要員:

Clinton Duffy
  • 論文著者

収集方法

All but one shark were tagged free-swimming. White Sharks were attracted with chum (minced Albacore) and lured close enough with fish baits to tag. Tags were deployed using a hand-held tagging pole that inserted a nylon umbrella-style dart (Domeier et al., 2005) into the dorsal musculature of the shark. Three sharks were tagged with Microwave Telemetry (MT) PTT100, and twenty-two were tagged with Wildlife Computers (WC) PAT4 and MK10 pop-up archival transmitting (PAT) tags. These were attached to the dart by a 23–25-cm leader of 2-mm diameter (181.4-kg test) monofilament nylon. One shark (64035), a 330 cm total length (TL) immature male, was caught using a baited line and secured in a cradle. This shark was double tagged with a MT PAT tag and a WC smart position and temperature (SPOT) satellite tag. The latter was bolted to the shark’s first dorsal fin.

Study Extent Twenty-five White Sharks (Carcharodon carcharias) were tagged with pop-up archival transmitting tags at Chatham Islands, Stewart Island, and one coastal location in New Zealand between April 2005 and September 2009.

Method step description:

  1. Daily positions were estimated from ambient light data stored on WC PAT4 and Mk10 tags using WC-GPE: Global Position Estimator Program Suite software (www.wildlifecomputers.com). Dawn/dusk light-level data were extracted using WC-AMP, and daily longitudes and latitudes were estimated using WC-GPE. Daily records with poor dawn/dusk light level curves were excluded from the analyses. Microwave Telemetry provided estimated latitudes and longitudes for data from PTT 100 tags. The most probable tracks were fitted by matching tag-measured SST with remotely sensed SST data using unscented Kalman filtering (UKFSST) (Nielsen et al., 2006; Lam et al., 2008). Preliminary fits indicated that models incorporating longitude bias and SST bias always produced implausible tracks, so we omitted these parameters. For sharks whose tags popped up on the programmed date (n = 8), the UKFSST models incorporated parameters for latitude bias and solstice error variance (which accounts for greater error around the equinoxes), and the measurement error for the last position was set to zero. For sharks whose tags popped up prematurely or reported their first accurate location some time after pop-up (N = 11), the pop-up locations were not known accurately, so measurement error was estimated for the last position. For nine of these sharks, the UKFSST models incorporated parameters for latitude bias and solstice error variance; the remaining two sharks did not provide enough data to estimate the solstice error parameter, so uniform error was assumed.

書誌情報の引用

  1. Duffy, C.A.J.; Francis, M.P.; Manning, M.; Bonfil, R. (2012). Regional population connectivity, oceanic habitat, and return migration revealed by satellite tagging of white sharks, Carcharodon carcharias, at New Zealand aggregation sites. In: Domeier, M.L. (ed.). Global perspectives on the biology and life history of the white shark, pp. 301-318. CRC Press, Boca Raton, USA. ISBN 9781439848401

追加のメタデータ